Fruit and Nut

 

 
Home Fruit Nuts Ordering Special Offers Links Workshops Opportunities News Climate Change Contact
   
Climate Change and Global Warming
   

Global Warming and Food Security Convention

Deep Blue: Facing up to non-reversable climate change. The melting of the polar summer ice and the prospects for human civilisation

Venue: Fruit and Nut Nursery, Westport

Date: Sunday 4th June 2017 (with additional workshops Monday 5th June).

More details here

 

Introduction to climate change

Climate Change is the term used to describe long term changes in weather patterns. Such changes have occured throughout the period that life has existed on this planet. It is well documented that long-term cycles influenced by irregularities in the earth's orbit and rotation cause distinctive warm and cold phases of thousands of years in duration. The last intense cold spell, usually referred to as The Ice Age (though there were many other Ice Ages prior to this one) , ended around twelve thousand years ago. Since then, there have been many smaller climate fluctuations, many of them still big enough to have major impacts on human civilisation. A warm period of approximately three centuries during the Middle Ages assisted the development of agriculture across many Northern European countries. The colder spell that followed - often referred to as the Little Ice Age - reined in agricultural expansion and saw tillage replaced by livestock farming (and sometimes orchards) in many places. More recently still, roughly since the end of the nineteenth century, global temperatures have begun to rise. Since the mid1980s, the rate of temperature increase has steepened significantly, to around 0.2°C per decade. Although this does not sound like much, data from ice cores, tree rings and other sources suggests that such a rapid rise in global temperature has not occured at any point in the last ten thousand years, and possibly not for far longer. If this increase continues, as climate science predicts - the earth will soon be warmer than at any time for thousands of years.

This time is different

While historical changes in climate have been almost entirely due to natural cycles, the changes that have occured during the latter part of the industrial era - particularly those of the last three decades - are different. Science has shown that the recent increases in global temperature are anthropogenic, in other words directly linked to human activities. The temperature increases are caused by rising levels of greenhouse gases in the atmosphere. These gases are called greenhouse gases because they cause more of the sun's heat to be trapped in the atmosphere, in the same manner as glass traps heat inside a greenhouse. And these additional greenhouse gases are the result of human activities such as cutting down forests, livestock farming and the of burning fossil fuels (oil, gas and coal). The principal greenhouse gas is carbon dioxide and is released into the atmosphere mainly by burning fossil fuels (oil, gas and coal). Methane - released by livestock and also by disturbance of wet soils - is the second most significant greenhouse gas.

Although some people - particularly those with vested interests in the fossil fuel industry or with lifestyles that might be impacted upon by any attempt to rein in fossil fuel use - have denied that recent global warming is anything to do with human actvities, the fact is that the overwhelming majority of the world's climate science community believe global warming is caused by human activities and their findings, published by the body known as the Intergovernmental Panel on Climate Change (IPCC) have been endorsed by the governments of every single member state of the United Nations.

Owing to the on-going effect of greenhouse gases already in the atmosphere, even if all the anthropogenic emissions were somehow halted tomorrow, global temperatures would continue to rise for a number of decades. Unfortunately however, the rate of global greenhouse gas emissions continues to rise, and with almost every country in the world increasing its emissions year on year, no change in this trend is likely (or even possible) in the near future. Meanwhile, global temperatures are set to continue rising for many decades, and possibly into the next century.

General Outlook (Europe)

The official EU position:

"Annual average land temperatures over Europe [over the remainder of this century] are projected to continue increasing by more than the global average temperature. The largest temperature increases are projected over eastern and northern Europe in winter, and over southern Europe in summer. Annual precipitation is generally projected to increase in northern Europe and to decrease in southern Europe, thereby enhancing the differences between currently wet regions and currently dry regions. The intensity and frequency of extreme weather events is also projected to increase in many regions, and sea-level rise is projected to accelerate significantly."

Source: www.eea.europa.eu/soer-2015/europe/climate-change-impacts-and-adaptation (see link below)

Interpretation: the scenario RCP 4.5 is predicated on significant reductions in anthropogenic greenhouse gas emissions. The RCP 8.5 scenario is predicated upon existing policies on global warming, and the continuation of current trends in energy use.

Projected changes in precipitation for Scenario RCP 8.5. The combination of reduced summer precipitation in tandem with increased evapotranspiration arising from higher temperatures will have massive implications for food production.

More Information on these scenarios

 

Precipitation Maps North America (Projected changes in precipitation 1961-1980 to 2080-2099)

Source: United States Environmental Protection Agency

The most notable impact is likely to be on California, the leading producer of many crops in the United States. California produces over 99 percent of the United States' almond, pistashio, walnut and rice crops, 97 percent of the plums and kiwis, 95 percent of the garlic, 60 percent of all carrots grown in the United States, and is the leading US producer of many other fruits and vegetables, as well as the being the largest dairy producer. In addition to supplying the rest of the United States, California also exports food to many other countries. The principal markets are Canada, the EU, Japan, China and Mexico. Excluding wine, the main agricultural exports are nuts, rice, dairy products and fruit.

California is already experiencing severe water shortages, as are the neighbouring states of Arizona, New Mexico, Nevada and Utah. All of these states can expect significantly reduced precipitation as the effects of global warming bite.

More information

 

Recent Paris Talks

Although hailed as a success, the most notable feature of Paris was the absense of any binding reduction targets or dates. Even if all the pledges made by the participating nations are actually implemented (a highly unlikely scenario given the political considerations for the governments involved) the world is still on course for a 2.7-3.0°C rise on pre-industrial temperatures. Unfortunately, the1.5°C aspirational target mentioned in the Paris agreement is now almost beyond reach.

The text of the Paris agreement can be read here

 

Global Warming Implications for Future Food Security

All credible climate-change scenarios point to higher temperatures and altered rates of precipitation. Many key food producing regions (for example the countries of Southern Europe and Western Asia, the southwestern states of the United States, Mexico, Egypt, the Indian subcontinent, and Australia) will suffer declining water availability, mostly directly from reduced precipitation but in some cases also indirectly from non-replenishment of subterranean aquifers and from diminishing seasonal glacial melt in adjacent mountain areas (as the glaciers retreat or disappear). Crop losses will vary widely, from relatively insignificant to potentially catastrophic.

Although some of these losses may be offset by increased food production in regions where global warming improves prospects for agriculture (for example parts of Canada, Scandinavia and Russia), these hypothetical increases in output are contingent on the successful alignment of many competing cultural, ideological, economic, environmental and logistical factors (particularly in the case of Russia). In any event, in a world threatened by diminishing food supplies, the price of staple foods on world markets is likely to go off the scale.

Both Ireland and the UK, with their high dependency on imported food (and in Ireland’s case, high dependency on imported energy too) will be vulnerable to any major disruption to global food supply chains. In both cases, the only remedy will be to increase production of crops intended for local consumption.

UK report warns of food security risks from global warming

A new report published in the UK warns of food security risks from global warming. One of the priorities flagged by the report is to 'assess the nature and scale of changing land suitability and its impacts, including by conducting further research into more resilient crop varieties, tree species, livestock regimes and farming systems'.

The report goes on to warn of the 'deterioration of high-grade agricultural land: due to increasing soil aridity, reduced water availability for irrigation, the depletion of soil organic matter, and sea level rise...the proportion of agricultural land in England and Wales classed as ‘best and most versatile’ (Grades 1, 2 and 3a) is projected to decline from 38% to 9% by the 2050s under a high climate change scenario. Current crop production in areas of eastern England and Scotland could become unviable due to the combination of drying soils and lack of dependable water supplies for use on farms.'

Similar impacts on food production are likely to occur in Ireland too. To download the report, click here (4MB)

 

More on Food Security